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Abstract. We present a numerical renormalization study of two-phase, viscous fingering 
flow in a uniform two-dimensional porous medium. Iterating our procedure gives the 
effective flow parametrization appropriate to successively larger scales and enables us to 
compute flow functions that can be used to simulate kilometre-sized oil reservoirs, starting 
from functions appropriate to 10 cm core samples. We parametrize the local flow in terms 
of the fractional and total flows across a block as functions of the average composition 
and pressure gradient across the block. From numerical simulations on a fine grid, we 
measure the corresponding flow functions for larger blocks: these show only limited 
statistical scatter and so allow us to define a renormalization. We discuss the range of 
physically significant fractional flow and total mobility functions, and lind evidence for 
non-trivial fixed point behaviour of these functions in the fingering instability regime. 

1. Introduction 

It is well known that when a less viscous fluid displaces a more viscous one through 
a porous medium, application of Darcy’s law to each fluid gives rise to the unstable 
growth of interface corrugations into a highly fingered flow (see Scheidegger 1971, for 
example). Capillary pressures, differential wetting, diffusional and dispersive mixing 
can all mitigate the instability, but there are important processes, such as secondary 
oil recovery, for which the suppression is of only limited effect. 

The conventional approach to such ‘two-phase flow’ is via a phenomenological 
description appropriate to a single, truly mixed phase of two components; the fluxes 
of each phase are then given uniquely in terms of the gradients of macroscopic 
averages-in particular pressure and composition. Because on the large scale the two 
phases are interdigitated (in a manner determined by the preceding flow history) rather 
than mixed, there can be no exact description of the flow properties of the effective 
mixture which is not statistical. Nevertheless, we might hope to find a single dominant 
large-scale behaviour from the ensemble of possible interdigitation patterns generated 
by the flow process. 

In this paper we explicitly test the assumption that a large-scale parametrization 
is possible and show that the scatter in the behaviour observed is modest in comparison 
with the overall clear trend. We focus on the most extreme case with fewest parameters, 
namely two-fluid displacement in a homogeneous medium with adverse viscosity ratio 
only. Thus our fluids are ‘miscible’ in the sense that they have no mutual surface 
tension or preferential wetting, but we do not incorporate any explicit local mixing 
effects. 
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Without the assumption of molecular mixing we adopt the following formulation 
for the fluxes of each component: 

q I ( C )  = -A (C)f(C)vP 

42(c )  = -A(c)(l  - f ( C ) ) V P  

where c = c1 is the composition fraction of component 1, and we choose units such 
that c2 = 1 - c. Thus A (c) is the total mobility governing the total flux 

4 = 1, + 4 2  = -A ( c ) V ~  

and f( c) is the fractional flow of component 1, 

41 =f(c)q.  

For the case of a truly mixed phase, the fractional flow would become simply f i c )  = c. 
We assume incompressibility, 

v * q = o  

and track the evolution of composition through 

a C  -+v * 4 ,  =o.  
at 

Our results are cast in the form of a renormalization-the flow properties of a super-cell 
that represent the observed relation between the appropriately averaged flow properties 
of its constituent single cells. The success of the procedure is explicitly tested in two 
ways. Firstly, we find that the numerical scatter in the renormalized flow properties 
over different realizations is not large enough to prevent useful comparison between 
these and the input, single cell properties. Secondly, we confirm that the iteration of 
two small scale renormalizations gives results equivalent to those from the correspond- 
ing (but computationally more costly) single-step large-scale renormalization. 

2. Numerical simulation 

All the work reported here is based on a solution of the above flow equations in a 
two-dimensional line drive geometry by a fine grid simulation code developed by BP. 
The basic algorithm uses Peaceman’s total velocity formulation in an explicit finite 
difference form based on flux corrected transport, to minimize numerical dispersion 
problems that arise from sharp concentration gradients. It has been tested extensively 
against experimental data, with favourable results (Christie and Bond 1987, Christie 
1988). We have performed the displacement under the constraint that the rate of 
injection of the displacing fluid is held constant, and for all the results reported here 
we have triggered the fingering instability by placing random initial concentrations at 
the injection end of the drive, with viscosity ratio p2/p ,  = 10. 

3. Renormalized flow functions 

We begin by performing a simulation on a given grid (of I x w blocks) using core 
sample data, for example, to prescribe the fractional flow and total mobility functions 
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for each block. From the results of this simulation, flow functions appropriate to a 
renormalization cell of size m x m grid blocks are computed. These new functions are 
used in a further simulation from which another pair of renormalized flow functions 
is similarly computed. In principle such a scheme can be iterated as many times as 
necessary to find flow functions that will facilitate the use of only a moderate number 
of grid blocks to describe a physically large flow, thereby providing a practicable 
method of relating core scale flow data to reservoir scale behaviour. 

The flow functions appropriate to a renormalization cell are calculated using the 
grid block pressure and concentration fields obtained from the numerical simulation 
results. For the fractional flow and total mobility respectively, the renormalized func- 
tions are, 

and 
/ \ -1 

with renormalized concentration given by 

where the sums are over grid blocks within the renormalization cell. In the above 
equations, only the drive direction components of the flux and pressure gradient have 
been used for this study. By performing these calculations using concentration and 
pressure data from various times during the displacement, the functional dependence 
on (renormalized) concentration is obtained. 

We next consider the physical basis for choosing functional forms for f and A.  
Given that the domain of flow behaviour presented by our flow equations excludes 
rate-dependent terms, there are two limiting cases of fluid flow, namely series flow of 
the two components, and flow in parallel. These flow configurations give respectively 
the minimum and maximum values of both total flux and fractional flow for a given 
concentration and pressure drop across a grid block. (In other physical systems there 
may be configurations that extend beyond these limits, turbulence, for example, would 
give a lower total flux than series flow.) The series flow functions are 

L(c)  = c 

1 
A A c )  = 

CPU, + (1 - C ) F 2  

and those for parallel flow are 
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Experimentally, it has been found that for well mixed fluids, the viscosity of the mixture 
is well represented by a ‘quarter power mixing rule’ (Koval 1963), that is 

with n = 0.25. The general form of equation (1) encompasses the series ( n  = -1) and 
parallel ( n  = +1) flow cases discussed above, and we adopt it in numerical fitting below. 
In the light of remarks made above, only values of n in the range In1 G 1 have physical 
significance. 

Given the forms of fs and f,, and by analogy with the total mobility, we have 
chosen the following one-dimensional parametrization for fractional flow: 

C 

= c + ( l  - c ) ( p l / p 2 ) 1 - w ’  

This form is also that given by the Todd and Longstaff (1972) parametrization for their 
notion of effective viscosity. The functions f, and fp correspond to w = 1 and w = 0 
respectively, and the range of physical validity is 0 s  w 

In general it is to be expected that projecting the two function space (f(c),  A(c)) 
onto a two-dimensional plane (in our case the n - w  plane defined by (1) and (2)) 
represents a severe approximation. However our particular choice incorporates the 
bounds discussed above, and generally fits most of our data within the limitations of 
the latter. We have found that, although there is sometimes a small amount of motion 
out of the n - w  plane (as gauged by the quality of fit), working in this plane does 
discover physically meaningful behaviour. 

1. 

4. Boundary effects 

The renormalization scheme described above is meaningful only if the renormalization 
cell is of a size and position in the flow such that effects due to the boundaries of the 
grid are not incorporated into the renormalized flow functions. This is an important 
constraint, and validating criteria for the positioning of the renormalization cell are 
presented here. 

From our simulation results we have found that the fingering formation is largely 
determined roughly by the time it has reached the position down the drive equal to 
the drive width. Thereafter, the transverse development of the fingers is substantially 
limited by the presence of the side boundaries, which are reflecting walls in our 
case-the use of periodic boundaries might reduce thkeffect, but we have not so far 
investigated this possibility. Accounting for the grid end boundaries is also important, 
because as some particular finger approaches breakthrough, the entire flow can be 
strongly perturbed. For flow functions that tend to suppress fingering, the displacement 
can become very diffuse with the consequence that breakthrough may occur before 
the renormalized concentration becomes very high, although to some extent this effect 
is offset by the fact that breakthrough less strongly perturbs the whole drive for such 
diffuse displacements. In general, obtaining the concentration dependence of the 
renormalized flow functions to a satisfactory extent requires that the drive must be 
sufficiently long. 
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The maturing of the fingers by the time they are a distance down the drive equal 
to the drive width relates significantly to the issue of where to place the renormalization 
cell. If it is placed too far down the drive, production end and side boundary effects 
will be included. If it is placed too near the injection end, the fingering will not be 
well developed and this will bias the renormalized flow functions towards those applying 
at the grid block level. 

In all the cases we have considered, we have used a grid of aspect ratio three to 
account for the problems associated with breakthrough whilst seeking to avoid the use 
of very many-grid blocks. Given this regime, it is the ratio of the drive width to the 
size of the renormalization cell, w /  m, that determines the influence of the boundaries 
on the renormalized flow functions. Plainly the larger the ratio the more confident we 
can be that the associated flow functions will be independent of boundary effects. But 
this has to be related to the penalties associated with either large w (requiring very 
many grid blocks) or small m (increasing the number of renormalization iterations-and 
hence the degree of approximation-required to model large-scale flows). 

We have found that with our grid of aspect ratio three, a value of six for the ratio 
w /  m satisfactorily suppresses the boundary effects, which allows for a renormalization 
cell of size 6 x 6 with the grid of size 108 x 36 grid blocks that we have mostly been 
using. For this grid, we have placed the renormalization cell at grid blocks 22-27 
inclusive in the drive direction. This size of renormalization cell would allow us to 
simulate reservoirs of kilometre size with only three or four renormalizations from the 
core scale. 

To show the effect of the ratio w / m ,  consider the renormalized flow functions 
appropriate to a 6 x 6 cell computed from simulation results for three different grids, 
3 6 x  12, 108x36 and 216x72, with the cell being in the equivalent positions 6-11, 
22-27 and 47-52 respectively in the drive direction. Such data are shown in figure 1 
for which the grid block flow functions correspond to the point (0.25, 1.0) in the n-w 
plane. The scatter in the fractional flow data from the two larger grids makes it difficult 
to say more than that they are broadly in agreement, and that the small grid data lie 

1 

3 0 - 
L - e 
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.- 
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U 
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I 

I 
0 
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Figure 1. Comparison of fractional flow ( a )  and total mobility ( b )  data for [ 6  x 61 renor- 
malization of perfect mixing with a quarter-power viscosity mixing rule, for three different 
values of w / m :  filled triangles, w / m  = 2;  open circles, w / m  =6;  filled circles, w / m  = 12. 
The curves are the initial grid block functions. 
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36 x 12 g r i d  

towards the lower boundary of the envelopes of the larger grid data. The total mobility 
data are more conclusive. Whilst the data from the larger grids are in good agreement 
within the scatter, being roughly bounded below by the quarter power rule, that from 
the smaller grid is significantly lower than this rule at intermediate concentrations. On 
the basis of this and other simulations we find that this dipping down of the total 

36 x 12 g r i d  

216  x 1 2  g r i d  6 0 f  6 x 6 \  

b x  6 
\ 

1. 

) 
4 

6 11 

b x  6 
\ 

1. 

Figure 2. Schematic of consistency test applied to the renormalization procedure. Data 
from the six 6 x 6 renormalization cells of the 216 x 72 simulation are used in a second 
simulation with a six-times coarser grid. The data from the 6 x 6 renormalization cell of 
this second simulation are then compared with the equivalent data from the 36x36 
renormalization cell of the first simulation. 

) 
4 
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0 1 

Concentrailon 

Figure 3. Fractional flow ( a )  and total mobility ( b )  data for the consistency test shown in 
figure 2: open circles for [6 x 61; filled circles for [6 x 61'; filled triangles for [36 x 361. 
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mobility data at intermediate concentrations is characteristic of small values of the 
ratio w /  m. The data in figure 1 suggest that boundary effects are seen for w /  m G 2, 
but that they become unimportant for w /  m 3 6. 

In addition we have found that provided that the above w / m  criterion is satisfied, 
the proximity of the cell to the grid side boundary does not effect the data significantly: 
it is when the cell is simultaneously close to both side boundaries that boundary effects 
become seriously incorporated into the renormalized flow functions. For the larger 
two simulations mentioned above, the data shown in figure 1 were obtained from six 
cells placed across the drive. The advantage of using several cells in this manner is 
that several different fingering realizations are then represented in the data, thereby 
increasing the statistical significance of the results. The scatter present in the data from 
the two larger simulations is partly accounted for by this inclusion of several different 
realizations. However, we have also found that data from just one cell can be much 
more scattered if w/ m 3 6, than if w /  m 2. 

We have tested this scheme as a true renormalization procedure as follows. The 
[ 6 x 6 ]  flow functions computed from the 216x72 simulation shown in figure 1 were 
taken as grid block functions in a simulation using a grid six-times coarser, namely 
36 x 12. From this simulation flow functions were computed corresponding to a cell 
of size 6 x 6 placed in the middle of the drive at 6-1 1 grid blocks inclusive. These data 
are then compared with those from a [36 x 361 renormalization of the original 216 x 72 
simulation, using a cell placed in the middle of the drive at 32-67 grid blocks inclusive 
(see figure 2). The two sets of data are shown in figure 3, together with the data from 
the intermediate [6 x 61 renormalization and the original grid block functions. Both 
fractional flow and total mobility data for these two different renormalization routes 
are in very good agreement, showing that the routes are equivalent, as they should be, 
and that the renormalization technique is working consistently. A generic problem of 
numerical renormalization is the change in length scale associated with the numerical 
dispersion between renormalization levels. However, the closeness of agreement 
between the [36x36] data and the [ 6 x 6 I 2  data, which provides a measure of the 
accuracy of the procedure, suggests that numerical dispersion is not substantially 
affecting the results. 

From figure 3 it can be seen that the fractional flow data for all three renormalizations 
are very similar, being somewhat increased over the original grid block function at 
intermediate concentrations. Again the total mobility data follow a different scenario. 
The data for the first [6 x 61 renormalization have increased at intermediate concentra- 
tions relative to the original grid block function, whereas the total mobility data from 
the larger renormalizations are hardly distinguishable from the original grid block 
functions. We believe that this change of behaviour in the total mobility data between 
the two renormalizations is due to the close proximity of the larger renormalization 
cell to the flow boundaries ( w / m  = 2), as noted above. It appears that the inclusion 
of side boundary effects in the renormalized flow functions causes a reduction in the 
total mobility at intermediate concentrations, but has little effect on the fractional flow, 
as noted above in relation to the data in figure 1. 

5. Results 

Using the repeated renormalization technique described above, we have investigated 
the n - o  plane in the physically significant region (In1 < 1,Oc w d 1) using a 108 x 36 
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grid to obtain renormalized data from six cells of size 6 x 6 placed at grid blocks 22-27 
inclusive in the drive direction. In all cases where breakthrough significantly perturbed 
the flow, data after breakthrough were excluded from the computed renormalization. 
Data for two iterations starting from the point (0.25, 1.0) are shown in figure 4. For 
the first renormalization, both the fractional flow and the total mobility data are seen 
to increase at intermediate concentrations when compared with the grid block functions, 
though there is a significant amount of scatter in the data. This scatter limits the 
significance that can be attached to the fit to this data used in the second simulation. 
Of course a full statistical treatment would be more informative in this respect, but 
we restrict ourselves to considering only the mean behaviour. For the second renormali- 
zation, the increase at intermediate concentrations is rather less, and the data are much 
less scattered. (Note that regarding the total mobility data, this result is different from 
the case above where the second renormalization cell was strongly subject to boundary 
effects.) This behaviour can be best represented by motion in the n - w  plane, and the 
data from figure 4 are shown in this way in figure 5 ,  together with our results. 

The region of the n - w  plane shown in figure 5 appears to separate naturally into 
two parts roughly corresponding to whether w is greater or less than approximately 
0.55. For values of w in the range 0 . 6 s  w S 1.0, the flow functions appear to converge 
under repeated renormalization to a point somewhere near (0.5,0.6) in the n-w plane. 
In principle further iterations could be made in an attempt to further isolate the exact 
nature of the motion in this region, but in practice it has to be borne in mind that the 
numerical renormalization procedure has only limited accuracy as indicated above, 
and that the degree of confidence represented by the data in figure 3 for the consistency 
test shown in figure 2 limits the progress that can be made in this way: because our 
simulation results contain a small but significant component of numerical dispersion, 
there is a danger that under repeated iteration of the renormalization, we stabilize the 
fingering through spurious finger suppressing dispersion terms. In general, including 
dispersion terms will drive the renormalization towards a lower value of w than would 
otherwise be the case, since as w decreases, the displacement tends to become more 
and more diffuse. Nonetheless, it is striking that the renormalizations from points on 
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Figure 4. Fractional flow ( a )  and total mobility (b)  data for [6x6] (open circles) and 
[6 x 612 (filled circles) renormalizations. The curves are the initial grid block functions. 
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the line w = 1.0 have almost converged to the same fractional flow function after just 
two or three iterations-a linear scaling factor of approximately 100. Furthermore, due 
to the scatter in the data for the first renormalizations from these points, as exemplified 
in figure 4, it may be that this degree of convergence occurs still more quickly. 

For values of w in the range O S  w s 0.5, no motion has been observed under 
renormalization. Certainly for the points (0, 0) and (1.0, 0), the latter being the parallel 
flow case, the functions are immediately stationary, an effect associated with an absence 
of any significant fingering during the displacement, which of course forces the 
renormalized functions to take the grid block values. For these displacements the front 
is extremely diffuse. However, for the other points shown in this region, the fingering 
is less suppressed than in the w = 0 cases; it may be that motion in this area is much 
too slow to be measurable by our numerical scheme. 

Although the data in figure 5 suggest that there is a substantial change of behaviour 
under renormalization approximately in the region of the line w = 0.55, as described 
above, this is not accompanied by a noticeable change in the fingering behaviour. 
Shown in figure 6 are contour plots of the concentration fields at t = 0.25 pore volumes 
for the points (0.5, l . O ) ,  (0.5, 0.65) and (0.5, 0.5) in the n-w plane. These plots show 
that as w decreases, fingering is gradually suppressed, but no obvious evidence for 
transitional behaviour is observed. 

We venture some interpretation of our results for the input of ‘conventional’ quarter 
power mixing rule miscible displacements. In this case the mobility rule, which is 
essentially an empirical account of experimental observation with fluid mixtures, is 
relatively stable under renormalization. By contrast the linear fractional flow function, 
f(c) = c, which comes from idealizing the mixture to be equivalent to a true single 
phase, changes significantly under renormalization, soon becoming an approximately 
stable function which appears to be universal for displacements exhibiting substantial 
fingering. The fingered mixture has a characteristic behaviour which is different from 
that of a truly mixed phase. This behaviour is most clearly represented in the fractional 
flow function, and is not very sensitive to the total mobility. 

Is there a fixed point? Because of the reasons given above, this intriguing question 
is hard to address with confidence. Within the limitations of our results and their 
resolution, it appears that the fractional flow function converges under renormalization 
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Figure 6. Contour plots of the concentration fields at f = 0.25 pore volumes for the 
(0.5, 1.0). (0.5, 0.65) and (0.5, 0.5) in the n - w  plane. The contours are at intervals 
in the range 0.1 to 0.9. Injection is from left to right. 

points 
of 0.1. 

and for practical applications is effectively scale invariant beyond a linear scaling 
factor of about 100 units starting from ‘conventional’ quarter power displacements. 
Whether the total mobility function converges under renormalization is rather less 
clear. Consequently it is uncertain whether the observed behaviour is associated with 
a unique fixed point near (0.5, 0.6); another possibility is that not all renormalizations 
starting from the w = 1.0 line converge to the same point, and that there is a line of 
fixed points that marks the boundary of the apparently stationary region at approxi- 
mately w = 0.55. 

6. Conclusions 

We have developed a self-consistent numerical renormalization scheme for prescribing 
miscible flow functions for use in reservoir scale simulations, given core scale flow 
data. Using this scheme we have found that the fractional flow function becomes scale 
invariant for practical purposes beyond a linear scaling factor of approximately 100, 
and that the invariant function appears to be universal for displacements exhibiting 
substantial fingering. The effect of renormalization on the total mobility function is 
less well established. Consequently, it is not clear whether there is a unique fixed point 
to which all displacements exhibiting substantial fingering eventually converge under 
renormalization, or whether, in the absence of such convergence, there is a line of 
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fixed points. The size of real reservoirs corresponds, in our scheme, to only approxi- 
mately four renormalizations from the core scale (plus the final simulation). As a result, 
we can confidently predict that the total mobility does not converge to a universal 
function in practise. 

All the work presented here is concerned with miscible flooding in homogeneous 
systems at a viscosity ratio of 10. We intend to extend this work to other viscosity 
ratios, to discover the effect of this parameter on the structure of figure 5 .  Another 
area for development is the matter of heterogeneous permeabilities, which is of 
considerable importance in the context of realistic models for reservoir systems. 
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